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1 Introduction

Despite several decades of study, the problem of constructing covariant consistent interac-

tions for higher-spin fields (i.e. spin s > 2) is still only partially solved, and has turned out

to be among the most intriguing and challenging problems of field theory, already at the

classical level. In this area of research, it is a common place to a posteriori view string the-

ory as a concrete example of such a consistent interacting theory. From a group-theoretical

point of view, the spectrum of string theory on Minkowski space-time can be described as

an infinite sum of unitary irreducible representations (UIRs) of the Poincaré group where

all higher-spin representations are massive. There is an infinite number of fields with in-

creasing masses for any given spin. Most studies on higher-spin field theories focus on the

truncation of this terribly huge spectrum to the leading Regge trajectory, where each UIR

has multiplicity one. Several arguments suggest that such truncations might be consistent,

at least in some high-energy regime, and are either looked at as useful toy models or as

candidate fundamental theories in themselves.

– 1 –
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The birth of higher-spin field quest can be traced back to the early thirties with

the pioneering work of Majorana [1] which, surprisingly enough, remained almost com-

pletely unnoticed during three decades, although it anticipated many later developments

who received considerable attention from the mathematical physics community: infinite-

component relativistic wave equations, UIRs of Lorentz, Poincaré and anti de Sitter groups,

etc.1 The infinite-component wave equation of Majorana was rediscovered independently

by Gel’fand and Yaglom [3] in the late fourties but its genuine revival was due to the efforts

of Fradkin [4]. In order to underline the premonitory character of Majorana’s ideas, one

could mention for instance that the solutions of the linear infinite-component relativistic

wave equation he proposed not only contain massive UIRs of Poincaré group for all spins

but also the more exotic “tachyonic” and “continuous-spin” representations [5] while it is

only2 in the late thirties that equations describing a single elementary (massive or mass-

less) particle of any spin were introduced by Dirac, Fierz and Pauli [9]. In the sixties,

the proliferation of hadrons with large spin s and mass spectrum roughly described by a

linearly rising Regge trajectory

m2 =
s − α0
α′

, (1.1)

with Regge slope α′ and intercept α0 , was one of the main mystery of strong interaction

physics. This prompted an intensive study of various infinite-component relativistic wave

equations (sometimes coming from the first quantization of some mechanical model) leading

to infinite towers of higher-spin particles whose mass is related to the spin. (See [10] and

references therein. A concise review of infinite-component relativistic wave equations and

dynamical groups can be found in [11].) Unfortunately, the equation of Majorana leads to

an unobserved decreasing Regge trajectory

m =
M

s+ 1
2

(1.2)

together with a spectrum of tachyonic particles and continuous-spin massless particles.

Analogous problems were shown to automatically arise by Grodsky and Streater [12] for

most reasonable avatars of Majorana’s seminal work. Their no-go theorem undermined the

corresponding programmes of research (dynamical groups and current algebras) while two

distinct (parton versus dual) models of hadrons started to attract attention (and gave rise,

respectively, to quantum chromodynamics and string theory).

Nevertheless, the representation theory behind Majorana construction is re-examined

here from a contemporary perspective because many of its key ingredients, such as the

singletons, play now a prominent role in the non-Abelian massless higher-spin theory on

anti de Sitter space time (see e.g. [13, 14] for some reviews). The paper [1] is usually

referred to as the first appearance in elementary particle physics of unitary representations

1A very concise and inspiring account of Majorana’s publication itself and of the history of infinite-

component wave equations can be found in [2].
2Esposito and Recami presented several evidences in the research notebooks of Majorana [6, 7] supporting

the thesis that he might have obtained Dirac-like equations for single massive fields of arbitrary spin even

before developing his infinite-component equation. According to Majorana himself, the paper [1] gave only

“a short summary” of his work on this subject [8].

– 2 –
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of Spin(1, 3) ∼= SL(2,C), the double cover of the Lorentz group, but it is almost never men-

tioned that actually Majorana also presented and made a decisive use of two unitary repre-

sentations of the bigger group Spin(2, 3) ∼= Sp(4,R), the double covering of the anti de Sitter

isometry group. Since this modern point of view is rather anachronistic, the paper [15]

of Dirac on these “remarkable” representations is traditionally referred to as the semi-

nal paper on th e “singleton” representations (using the terminology introduced by Flato

and Frønsdal [16] much later). Still, this surprising appearance of two a priori unrelated

structures in the same context is very suggestive, and so it is not excluded that Majorana-

like constructions could play a role in the mysterious spontaneous symmetry breaking of

higher-spin gauge symmetries. This possibility motivates a thorough examination of a class

of Majorana-like infinite-component wave equations from a contemporary perspective.3

1.1 Summary of the main results

In the present paper, the generation of various infinite spectrums of masses for higher-spin

particles from a single relativistic wave equation but with an infinite number of components

is investigated. The analysis is essentially restricted to four-dimensional Minkowski space-

time but most of the results allow straightforward higher-dimensional extensions.

The focus is put here on the intermediate situation where the generated mass spec-

trum is neither rising like (1.1) nor decreasing like (1.2) but is instead a “horizontal” Regge

trajectory. In other words, there is only one mass-shell but of infinite degeneracy:4 m2 =

constant for all (integer and half-odd-integer) spin s . The proposed supermultiplet is thus

an infinite tower of particles of equal mass but with all spins. This collection of particles is

shown to carry an irreducible representation of the osp(1|4) superalgebra. More concretely,

the physical components of each massive field is a spin-s representation and the direct sum

of all such representations (with multiplicity one) precisely fits in the UIR of osp(1|4)
called the “singleton supermultiplet” (see e.g. [18] for a pedagogical introduction). This

argument is valid for any fixed plane wave so that OSp(1|4) symmetry group commutes

with the space-time translation group. From the space-time point of view, the supermulti-

plet proposed here carries also a representation of the superPoincaré algebra with tensorial

“central” charges. This property is reminiscent of the supersymmetric particle models

with tensorial central charges [19] producing upon quantization the infinite supermultiplet

of massless particles with all spins given in [20]. This model is of direct relevance [21] in the

non-Abelian higher-spin gauge theory on AdS4 . However, it should be stressed that our

supermultiplet is not a usual one in the sense that the corresponding “translation” opera-

tors, mix space-time translation and “spinning” degrees of freedom. The usual translation

of the superalgebra are recovered for the massless solution of the Majorana equation, or

equivalently, in the continuous-spin limit of the massive supermultiplet.

3Somewhat similarly, an old mechanical model (inspired by the string model of hadronic physics) pro-

ducing an infinite tower of massless and massive particles has been revisited very recently [17] in the modern

light of the interaction problem for higher-spin gauge theories.
4Notice that this property is in agreement with the main conclusion of Grodsky-Streater’s no-go theo-

rem [12]. In the present context, this degeneracy is not considered as a fatal disease but, on the contrary,

as a natural feature of a massive higher-spin multiplet.

– 3 –
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This limit deserves several comments because it is of interest in itself. In the recent

paper [22], linear relativistic wave equations unifying the spin-0 equation introduced by

Dirac in [23] and its spin-1/2 counterpart [24] were proposed and generalized (by means of

the Majorana equation) to a supersymmetric theory of massive higher-spin particles. The

resulting theory is characterized by a nonlinear symmetry superalgebra that, in the infinite-

spin limit, reduces to the super-Poincaré algebra with or without tensorial central charge.

This subtle infinite-spin (s→∞) and zero-mass (m→ 0) limit of massive higher-spin rep-

resentations with the product ms = M kept fixed has actually been studied recently [25]

and leads to one of the two (either bosonic or fermionic) “continuous-spin” representations

of the Poincaré group (whether the spins s are all integer or all half-odd-integer). Actually,

the Majorana equation provides a particular realization of this limit because the massless

sector can be understood as the infinite-spin limit of a couple of particles of spins s+ 1/2

and s with masses determined by the Regge trajectory (1.2). Notice that the ratio of their

masses and number of degrees of freedom goes to unity in the limit, as it should be for any

exact supermultiplet. After the limit, the couple of (bosonic and fermionic) continuous-spin

particles forms a supermultiplet: the massless sector of Majorana’s equation is supersym-

metric, a surprising fact which seems to have been unobserved previously. A continuous-

spin supermultiplet was already found in [26] but non-trivial central extensions were not

found. Therefore, one may identify the superPoincaré algebra obtained in [22] and in the

present paper as a possible extensions of [26] with tensorial central charges.

1.2 Structure of the paper

The plan is as follows: section 2 is a review of infinite-component Dirac-like equations of

the type introduced by Majorana. These equations are introduced from a very general

perspective which allows their straightforward generalization to other representations of

the Lorentz algebra and to any dimension. The Di and Rac representations are instru-

mental in Majorana’s construction, so the section 3 is devoted to a detailed review of the

many aspects of these representations in their (probably most convenient) realization in

terms of Fock space. This allows to review briefly in section 4 the spectrum of particles for

the infinite-component Majorana equation. More generally, infinite-component relativistic

wave equations whose spectrum of solutions provide arbitrary Regge trajectories are pre-

sented in section 5. A dictionary between the planar harmonic oscillator states and the

infinite collection of massive particles in rest frame of all spins and of equal mass is provided

in section 6. Following the philosophy of dynamical groups [10, 11], we boost this infinite

collection of states and prove in section 7 that it forms an infinite supermultiplet: it spans

an irreducible representation of the orthosymplectic group OSp (1|4) and of the super-

Poincaré group with tensorial central charges. The latter groups respectively correspond

to “spinning” versus “space-time” symmetries. The section 8 is the conclusion, where in

particular, some aspects about (super)symmetry breaking are briefly discussed. The main

ingredient for building the various representations considered is the Weyl algebra A2 , so

an appendix is devoted to several of its finite-dimensional algebras which are used here.

– 4 –
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2 Infinite-component Dirac-like equations in any dimension

In order to stress the degree of generality of the underlying philosophy behind the infinite-

component Majorana equation, this section proposes some possible generalisations in the

light of modern knowledge of representation theory.5 One of the key idea of Majorana was

to write down a linear wave equation which formally resembles to Dirac’s one except that

the wave function takes value in a unitary Lorentz algebra module V (or “representation

space”), so that the Hilbert space H of solutions is a reducible Poincaré algebra module

decomposing as an infinite sum of irreducible Poincaré algebra modules where the values of

the quadratic (momentum squared) and quartic (Pauli-Lubanski vector squared) Casimir

operators are related by means of the wave equation. In other words, the mass spectrum

of particles is related to the spin.6 As stressed here such a construction can of course

be done in any space-time dimension and by using various unitary representations of the

Lorentz group. The restriction to D = 4 dimensions and Majorana representation of the

Lorentz group can be understood as a very particular case. (For a review of the UIRs

of Poincaré groups and of their correspondence with relativistic wave equations in any

space-time dimension D > 4 , see e.g. [28].)

Concretely, let ψ be a wave function taking values in some Lorentz so(1, D−1)-module

V where the generators of so(1, D − 1) are realised as Hermitian operators Sµν , acting on

the spinning degrees of freedom (or “components”) that span the module V , and satisfying

the commutation relations

[Sµν , Sλρ] = i(ηµλSνρ + ηνρSµλ − ηµρSνλ − ηνλSµρ) (2.1)

where ηµν = diag(−1, 1, · · · , 1). Consider the generators of the Poincaré algebra,

Pµ = −i∂/∂xµ, Jµν = xµPν − xνPµ + Sµν , µ, ν = 0, 1, . . . , D − 1 (2.2)

where xµ are the space-time coordinates, Pµ their conjugated momenta and Sµν is now

interpreted as the spin part of the Lorentz generator Jµν .

As it is, the space of wave functions ψ is by construction a module of the Poincaré

algebra, and thus, of its Lorentz subalgebra generated by Jµν . Notice that even when the

so(1, D−1)-module V generated by Sµν is irreducible, it does not implies the irreducibility

of so(1, D−1)-module generated by Jµν . The important point we would like to emphasize,

is that it is necessary to have some relativistic wave equations (e.g. the Dirac, Proca

equation, etc.) in order to determine what is the physical content of the theory and, for

instance, determine whether the representation of the Poincaré algebra is irreducible and

unitary. Indeed, the relevant iso(1, D − 1)-module is the submodule H of solutions of the

relativistic wave equations. This subtlety is well-known but may be sometimes confusing.

For instance, we will stress that the infinite-component wave function of Majorana takes

5An exhaustive treatment of finite-component Dirac-like equations in D = 4 dimensions was performed

by Bhabha in [27].
6Actually, Majorana’s motivation was not to generate a mass spectrum but instead the property that

the equation admits only positive energy solutions.
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values in a UIR of the Lorentz algebra but the Hilbert space of solutions of this wave

equation carries a reducible representation of the Poincaré algebra.

Till now, the discussion has been completely generic so let us focus on the general recipe

for preparing a Majorana-like infinite-component relativistic wave equation goes as follows:

1. write down a Dirac-like equation

(
PµΓ

µ −M
)
ψ = 0 , (2.3)

where M is a non-vanishing parameter, say positive M > 0 , with the dimension of

a mass;

2. impose that the “Gamma matrices” Γµ transform as vectors under the adjoint action

of Lorentz algebra:

[Sµν ,Γλ] = i(ηµλΓν − ηνλΓµ) , (2.4)

in order to ensure Lorentz invariance;

3. require that the components of the wave function transform in a representation of the

Lorentz algebra whose generators are proportional to the commutator of “Gamma

matrices” via the usual relation

Sµν := −i [Γµ,Γν ] ; (2.5)

4. relax Dirac’s assumption that (2.3) implies the Klein-Gordon equation P 2 = −M2 ;

5. assume that the components of the wave function span some unitary (hence infinite-

dimensional) module V of the pseudo-orthogonal algebra so(2, D− 1) spanned by Γµ
and Sνρ .

Physically speaking, the fourth assumption is necessary if one wants to generate a non-

trivial mass spectrum. Mathematically speaking, it means that the Γ’s are not assumed

to span a Clifford algebra. Actually, no hypothesis is made on their anticommutator.

However, the assumptions (2.1), (2.4) and (2.5) state that Γµ and Sνρ span together a rep-

resentation of the pseudo-orthogonal algebra so(2, D−1). This lead to the last assumption,

which implies that V is also a unitary (maybe reducible) module of the Lorentz subalgebra

so(1, D − 1) ⊂ so(2, D − 1) . The main differences between Majorana infinite-component

and Dirac finite-component equation are that, for the former, the wave function transforms

in a unitary representation and that the Γµ are all Hermitian (in such a way that their

spectrum is real), which is impossible for Clifford algebras with Lorentzian signature.7 No-

tice that the gender of the Dth extra direction associated to the generator Sµ,D := Γµ is

fixed by the relative sign in the commutation relation (2.5), so another possibility would

7 Indeed, more generally, the second and third assumptions above are very closely related to the

parafermions [29, 30]. The difference being that he considered order p parafermions, that is a finite dimen-

sional representation of the Lorentz algebra. Order one parafermions correspond to the Clifford algebra,

order two parafermions to the Kemmer-Duffin-Petiau algebra, etc [29].

– 6 –
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correspond to the commutation relations of the de Sitter algebra so(1, D) . This choice is

rejected because there do not exist any UIR of so(1, D) such that S0,D := Γ0 is positive-

definite. In other words, if the generators of so(1, D) are all Hermitian then the spectrum

of Γ0 is, of course, real but it automatically contains negative eigenvalues.

The quadratic Casimir operator of the Lorentz subalgebra so(1, D − 1) is the square

of the generators Sµν :

C2
(
so(1, D − 1)

)
=

1

2
JµνJµν . (2.6)

The quadratic Casimir operator of the Poincaré algebra iso(1, D−1) := R
D−1,1

B so(1, D−
1) is the square of the momentum

C2
(
iso(1, D − 1)

)
= −P µPµ , (2.7)

while the quartic Casimir operator is

C4
(
iso(1, D − 1)

)
= −1

2
P 2JµνJ

µν + JµρP
ρJµσPσ , (2.8)

which, for D = 4, is the square of the Pauli-Lubanski vector W µ,

Wµ :=
1

2
εµνρσJνρPσ , (2.9)

(where ε0123 = 1). Notice that the quadratic and quartic Casimir operators essentially

classify the UIRs in D = 4 , but this is no more true in higher dimensions where more

Casimir operators are necessary. Moreover, one should stress that the eigenvalues of the

Casimir operators do not characterize uniquely an irreducible representation (for instance,

the quadratic and quartic Casimir operators vanish for all helicity representations).

The sign of the quadratic Casimir operator (2.7) of the Poincaré algebra determines

the gender of the momentum Pµ 6= 0 (when M 6= 0) and thereby its stabilizer (or “little”)

algebra l sgn(C2) depending on sgn(P 2) = −sgn(C2) , the sign of the momentum square. This

implies that the unitary Poincaré module H of solutions ψ to the Dirac-like equation (2.3)

admits the obvious decomposition in submodules

H = H− ⊕H0 ⊕H+ ,

where the direct sum is actually over the sign of the momentum square, sgn(−P 2) ∈
{−1, 0,+1} . The quartic Casimir operator (2.8) of the Poincaré algebra can be evaluated

in components in the canonical frame adapted to the given momentum. These relation

between the various values of the Casimir operators can be summarized in table 1 (see [28]

for details). The important lesson is that for given values of the quadratic Casimir operators

of the Poincaré group and of the little group, the quartic Casimir operator is completely

determined. Therefore it is natural to decompose the so(1, D − 1)-module V as a direct

sum of irreducible lε-submodules V J
ε labelled by the index J for fixed ε ∈ {−1, 0,+1} :

V = ⊕J V
J
ε . This decomposition can be computed via the known branching rules for

the restriction of so(1, D − 1) to its subalgebra lε . From Wigner’s method of induced

– 7 –
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Quadratic Casimir Stability algebra UIR Quartic Casimir operator

> 0 l+ = so(D − 1) Massive C2

(
iso(1, D − 1)

)
× C2

(
so(D − 1)

)

= 0 l0 = iso(D − 2) Massless C2

(
iso(D − 2)

)

< 0 l− = so(1, D − 2) Tachyonic C2

(
iso(1, D − 1)

)
× C2

(
so(1, D − 2)

)

Table 1. Poincaré group representations in D dimensions.

representations, one expects that, in each Hilbert subspaceHε of solutions there is a one-to-

one correspondence between any irreducible lε-submodules V J
ε and an irreducible iso(1, D−

1)-submodule HJ
ε . Therefore, the Hilbert space of solutions decomposes into irreducible

Poincaré-modules as follows

H =
⊕

ε∈{−1,0,+1}

⊕

J

HJ
ε .

A particular example might clarify these last steps. Let us take as unitary irreducible

so(2, D− 1)-module V the “conformal scalar field” on R
1,D−2 space-time for D > 4, which

is denoted by D(D−32 , 0) in the literature (see e.g. [31] for a short review). Let us consider

a plane wave in the massive sector H+ of solutions of the Dirac-like equation (2.3). In the

rest frame, the momentum takes the simple form P µ = (m, 0, . . . , 0) hence the eigenvalue

of the Dirac-like operator is equal to mΓ0 = M . Thus the massive spectrum is entirely

determined by the spectrum of the operator Γ0 , which is interpreted as the “energy” when

the algebra so(2, D− 1) is interpreted as the anti de Sitter isometry algebra. The rotation

algebra l+ ∼= so(D − 1) ⊂ so(2, D − 1) characterizes the massive representations. Then,

V = D(D−32 , 0) can be decomposed as the direct sum of irreducible so(D− 1)-modules DJ

(labeled by a Young diagram made of a single row of J boxes; they generalize the “spin-J”

so(3)-modules) as follows:

D
(
D − 3

2
, 0

)
=
⊕

J∈N

DJ ,

where each irreducible so(D − 1)-module V J
+ = DJ is also an eigenspace of Γ0:

Γ0DJ =

(
J +

D − 3

2

)
DJ .

This shows that the massive sector H+ of solutions of the Dirac-like equation is the infinite

direct sum of irreducible iso(1, D−1)-modulesHJ
+ describing a particle of “spin” J and mass

mJ =
M

J + D−3
2

, J = 0, 1, 2, . . . , (2.10)

generalizing the formula (1.2) for bosons. This shows explicitly that though the wave func-

tion spans an irreducible Lorentz-module, the corresponding space of solution of the wave

equation is reducible. The same result should apply to the “conformal spinor field,” i.e.

for half-odd-integers J .

– 8 –
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It is worth mentioning that the formula (2.10) applies also in the three-dimensional

case, mJ = M/J , but the spin J is not quantized: it may take continuous real values.

In fact, the Majorana equation in D = 3 even fixes the spin J ∈ R and describes anyons

(“fractional spin particles”), see e.g. [32, 33] and reference therein. The main reason is

that the Dirac-like operator P · Γ = 1
2εµνλP

µJνλ is a quadratic Casimir operator of the

Poincaré algebra iso(1, 2) since inD = 3 the Γµ operator is equivalent to the dual of Lorentz

transformation, i.e. Γµ = 1
2εµνλS

νλ implies (2.5).

Majorana’s work corresponds to the particular case where D = 4 and the unitary

module of the AdS4 algebra is the singleton supermultiplet, i.e. the sum of the “Di” and

“Rac” UIRs (following the terminology introduced in [16]) or, rephrasing it, in the trivial

frame (P µ = 0) the Majorana wave function is equivalent to singleton supermultiplet.

These two “remarkable” UIRs of so(2, 3) share the property that their restriction to so(1, 3)

remains irreducible (this, and previously mentioned facts on the AdS4 algebra are presented

in more details for the D = 4 case, in appendix A.)

3 The OSp(1|4) Di-Rac-Majorana representation

The representation of so(2, 3) employed by Majorana in the Dirac-like equation (2.3) is

very exceptional. He looked for some unitary representations of so(2, 3) in order to get

positive-energy solutions from his equation, as explained in the previous section. The

isomorphism of algebras sp(4) ∼= so(2, 3) allows to construct representations of the Anti

de Sitter algebra as symmetrized quadratic products in the Hermitian generators of the

Weyl algebra A2 (realized here by the operators qi and ηi = −i∂/∂qi, i = 1, 2 ; see the

appendix A for more details). In fact, with this procedure Majorana implicitly introduced

an additional structure for the spinning degrees of freedom which in turn is related to

the metaplectic group Mp(4) := S̃p(4) , the double cover of the symplectic group Sp(4) .

The Fock spaces were rigorously introduced as modules of the groups Mp(2n) by Weil and

Shale in mathematics under the name of metaplectic modules, but they were known already

to physicists since they underlie the harmonic oscillator with n degrees of freedom. The

metaplectic (or Weil) representation is a faithful unitary representation of the metaplectic

groupMp(4) , and it is only a projective (“double-valued”) representation of the symplectic

group Sp(4) . The metaplectic group Mp(4) is not a matrix group: it has no faithful finite-

dimensional representations. The metaplectic representation is reducible: the metaplectic

moduleM decomposes in two irreducibleMp(4)-modules, sayM =M+⊕M− . Actually,

the Fock spaceM is Z2-graded by the parity of the number operator. Surprisingly, the Di

and Rac UIRs of Sp(4) ∼= Spin(2, 3) are identified with the previous modules for Mp(4) :

Di= M− and Rac= M+ . The Di and Rac representations carry half-odd-integer and

integer spin respectively, and they can be joined in a representation of OSp(1|4) with

the supercharges interchanging the Di and Rac modules. (See the appendix A.) In the

metaplectic representation the operators interchanging theM± modules are naturally given

in terms of the generators of A2 . However, a subtle but important observation is in

order: The usual supercharges ofOSp(1|4) are Grassmann-odd (fermionic), hence they have

finite-dimensional representations. Instead, the supercharges of OSp(1|4) are represented
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here by generators of A2, which are Grassmann-even (denominated as well “bosonized

supersymmetry” [33, 34]), therefore we must get an infinite-dimensional representation.

We will take full advantage of this fact to get an infinite (massive) super-multiplet.

Let us study these aspects in detail. The generators of the Weyl algebra A2 can be

arranged in the vector La = (q1, q2, η1, η2), where a = 1, 2, 3, 4 . Defining Mab :=
1
2{La, Lb}

we obtain the osp(1|4) (anti)commutation relation

[Mab,Mcd] = i(CacMbd + CbdMac + CadMbc + CbcMad)

Mab =
1

2
{La, Lb}, [Mab, Lc] = i(CacLb + CbcLa), (3.1)

derived from the canonical commutation relations of the Weyl algebra generators,

[La, Lb] = iCab, Cab =

(
0 I2×2

−I2×2 0

)
. (3.2)

The isomorphism sp(4) ∼= so(2, 3) implies that the symplectic index a is actually also

spinorial in the sense that the vector La can also be interpreted as a Grassmann-even real

spinor (“twistor”) and the antisymmetric (symplectic) matrix Cab also works as a spinor

metric (see e.g. [20]) raising and lowering spinor-symplectic indices as Aa = AbC
ba and

Aa = CabL
b, where Cab = Cab, CacC

bc = δba. We are now able to obtain in a space-time

covariant way the singleton representation of the algebra so(2, 3)8

Sµν = − i
2
(γµν)abMab, Γµ = −1

4
(γµ)abMab, (3.3)

where the Dirac γ−matrices are taken in the Majorana representation (A.3). As a direct

consequence of (3.2) we have the following identities

ΓµΓµ =
1

2
, ΓµSµν = SνµΓ

µ = −3i

2
Γν , εµνλρSνλΓρ = 0. (3.4)

It has to be stressed however that the Γ operators do not produce the Clifford algebra but

instead ΓµΓν = 1
2ηµν − 3i

2 Sµν − SµλS
λ
ν . From these relations, the two Casimir operators

of so(2, 3) are easily obtained,

C2
(
so(2, 3)

)
:=

1

2
SABSAB = −5

4
, C′2

(
so(2, 3)

)
:= V AVA = 0, A,B = 0, 1, 2, 3, 4,

where S4µ := Γµ has been defined together with the operator V A := εABCDESBCSDE
which is identically zero V A ≡ 0. The Levi-Civita tensor ε01234 = 1 and the metric is taken

to be ηAB = diag(−1, 1, 1, 1,−1) . Instead, for the Lorentz subalgebra so(3, 1), the Casimir

operator are given by

C2
(
so(1, 3)

)
:=

1

2
SµνSµν = −3

4
, C′2

(
so(1, 3)

)
:=

1

4
εµνλρSµνSλρ = 0. (3.5)

8For further details of this representation see appendix A, and alternatively ref. [22].
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It is convenient to write the osp(1|4) commutation relations (3.1) in terms of the space-time

covariant generators (3.3),

[Sµν , Sλρ] = i(ηµλSνρ + ηνρSµλ − ηµρSνλ − ηνλSµρ)
[Sµν ,Γλ] = i(ηµλΓν − ηνλΓµ), [Γµ,Γν ] = −iSµν ,

[Sµν , La] = −(γµν)a bLb, [Γµ, La] =
i

2
(γµ)a

bLb,

{La, Lb} = −2(iSµνγµν − Γµγ
µ)ab. (3.6)

The supersymmetric structure reveals that the so(2, 3) representation is reducible since

it contains a bosonic and a fermionic submodule. This is also reflected in the existence

of a nontrivial central element commuting with so(2, 3). It is the parity operator in the

“spinning” phase space, denoted R, which maps (qi, ηi) to (−qi,−ηi). This operator is

unitary since it is associated to a U(1) ⊂ Sp(4) transformation. Indeed, we have

R = − exp(i2πΓ0) = exp(i2πS12). (3.7)

This means that R can be understood as a 2π rotation in a time-time like or a space-space

like plane but by a π rotation in the plane R
2 with coordinates (q1, q2) . Observe that

RLaR† = −La, RSµνR† = Sµν , RSµνR† = Sµν . (3.8)

Taking into account the equations R† = R, R2 = 1 and (3.8) the following (anti)commu-

tation relations,

[R, Sµν ] = 0, [R,Γµ] = 0, {R, La} = 0 , (3.9)

are obtained. Thus R generates a representation of Z2 such that Sµν , Γµ are even and

La are odd operators, i.e. R is the grading operator of the osp(1|4) superalgebra (or

more generally of A2) in the representation (3.6).9 The eigenspaces, M± = ±RM±,
are invariant modules of Sp(4). We can extract out irreducible representation of Sp(4)

introducing of the projector operators,

Π± =
1

2
(1±R), (Π±)

2 = Π±, Π+Π− = 0, Π+ +Π− = 1, (3.10)

such that Π±M = M±. From (3.9) and (3.10), the irreducible representation of Sp(4)

upon these two modules are labelled by Sp±(4) and are generated by,

sp±(4) = {S±µν := SµνΠ±, Γ±µ := ΓµΠ±}, (3.11)

with the algebras sp±(4) commuting with each other. The sp+(4) algebra generates the

SO(3, 2) group and sp−(4) its double cover Sp(4), associated respectively with bosons and

fermions, and both are merged in the metaplectic group. Of course, at the level of algebras

9The R operator employed here is, a generalization of the parity operator of the one-dimensional har-

monic oscillator previously introduced in [35], and frequently called “Klein” or “reflection” operator (see

e.g. [33, 36, 37]).

– 11 –



J
H
E
P
0
5
(
2
0
0
9
)
1
1
8

Representation M M− M+

A2 Fock space odd even

Mp(4) Metaplectic module odd even

OSp (1|4) Singleton supermultiplet Spinor singleton Scalar singleton

Spin(2, 3) ∼= Sp(4) Di -Rac module Di : D
(
1, 1

2

)
Rac : D

(
1

2
, 0
)

Spin(1, 3) ∼= SL(2,C) Majorana representation Principal :
[
1

2
, 0
]

Complementary :
[
0, 1

2

]

Table 2. Terminology in different contexts for the modules M, M±.

mp(4) ∼= sp(4) ∼= so(2, 3). The module M is described in appendix A via the reduction

of mp(4) under its maximal compact subalgebra, say so(2)⊕ so(3). The modules M± are

then identified as the lowest-weight modules for the two Cartan generators: the energy

Γ0 and the spin of the so(3) subalgebra. The modules M− and M+ are thereby denoted,

respectively, as D( 1/2 , 0 ) and D( 1 , 1/2 ) (see e.g. [18] for a review).

The ubiquitous appearance of the above-mentioned modules explains the large number

of synonymous terminology which have been used to refer to them. For the convenience

of the reader, the various names and notations for these modules are summarized in the

table 2 corresponding to the various objects acting on them.

It is also possible to reduce the complex so(2, 3) algebra under its Lorentz subalgebra

so(1, 3) ∼= sl(2,R)⊕ sl(2,R) generated by

J0 =
Γ0 + S12

2
, J1 =

Γ1 + S02
2

, J2 = −
S01 − Γ2

2
(3.12)

J̄0 =
Γ0 − S12

2
, J̄1 =

Γ1 − S02
2

, J̄2 = −
S01 + Γ2

2
. (3.13)

Then, the module M decomposes into the tensor product of two sl(2,R) modules, say

as M = ML ⊗ MR . The usefulness of the representations (3.12)–(3.13) is that these

submodules can be identified with the left and right subsectors, as is manifest when one

makes use of the chiral representation of the Dirac matrices in (3.3) or when one works

with “dotted” and “undotted” spinors. In fact, the chiral representation is the one usu-

ally employed in the description of massless higher spin field on AdS4 (e.g. in [38]) or

on Minkowski space-time R
1,3 (for instance in [39]). It should be stressed however that

so(1, 3) ∼= sl(2,R) ⊕ sl(2,R) is an isomorphism of complex algebras but not of real al-

gebras. Roughly speaking, it does not preserve hermiticity nor the number of compact

directions since the isomorphism makes use of multiplication by imaginary factors. If

one complexifies so(1, 3) and defines R1 = iJ1 + iJ̄1, R2 = iJ2 + iJ̄2, R3 = J0 + J̄0 and

B1 = −i(iJ1 − iJ̄1), B2 = −i(iJ2 − iJ̄2), B3 = −i(J0 − J̄0), they generate the Lorentz

algebra, the R’s generating the rotations and the B’s the boosts. But this representa-

tion is not unitary since these operators are not Hermitian. More precisely, if one intro-

duces Lα, L̄α̇, α, α̇ = 1, 2 such that L†α = L̄α̇ and [L1, L2] = −i, [L̄1̇, L̄2̇] = −i and define

Lαβ = 1
2 {Lα, Lβ} , L̄α̇β̇ = 1

2

{
L̄α̇, L̄β̇

}
and Lαα̇ = 1

2

{
Lα, L̄α̇

}
, the relationship with so(2, 3)

is given by Sµν = i
2σ

µν
αβL

αβ − i
2 σ̄

µν

α̇β̇
L̄α̇β̇ ,Γµ = 1

2σµαα̇L
αα̇ with σµ, σ̄µ the Dirac matrices in

the Weyl representation (see [39] for the notations). But since the σ−matrices are complex
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matrices this clearly shows that the correspondance from Lαβ , L̄α̇β̇ and Lαα̇ to the so(2, 3)

generators only holds in a complexification.

The irreducible representations of the complex Lorentz algebra so(3, 1) are labelled by

the spin of every sl(2,R), i.e. here the eigenvalues of J0 = N1/2 and J̄0 = N2/2. This

reproduces the same modules than for the reduction under the subalgebra so(2) ⊕ so(3),

since their Cartan subalgebras are basically the same, formed by the number operators

N1 and N2. In Vasiliev’s theory of interacting massless higher-spin fields on AdS4 (as

reviewed in [38]), the higher-spin superalgebra of symmetries is isomorphic to the Weyl

algebra A2 (endowed with the commutator as Lie bracket). The metaplectic module is

also a module of the Weyl algebra, thus the singleton supermultiplet is the module of the

higher-spin superalgebra. The higher-spin superalgebra is then understood as the infinite-

dimensional extension of the superalgebra OSp(1|4) on AdS4; it is realized as polynomials

in the generators La which are not constrained to be at most quadratic. The elements of A2

with degree higher than two are associated with the massless higher-spin fields on AdS4.

A somewhat surprising feature of the massive higher-spin supermultiplet in Minkowski

introduced in section 6 later on is that it is a module of the higher-spin superalgebra on

anti de Sitter. Though this group of symmetries acts only on the spinning degrees of

freedom for the massive supermultiplet, it might be a remnant of the higher-spin gauge

symmetries after a spontaneous symmetry breaking and a flat space-time limit.

4 Spectrum of the Majorana equation

The Majorana theory [1] consists of the Dirac-like equation (2.3) provided with the Poincaré

generators (2.2) and the spinning degrees of freedom given by the so(2, 3) algebra represen-

tation (3.3). Fermions and bosons are respectively contained in the Di and Rac modules of

so(2, 3) and both can be unified in the supersymmetric singleton module of osp(1|4). More

concretely, the fields ψ(x, q) are functions of the space-time coordinates xµ and the internal

coordinates qi, the last providing the spinning degrees of freedom, completing effectively a

six-dimensional configuration space.

The information about the particle content is encoded in the Casimir operators P 2

and the square of the Pauli-Lubanski vector (2.9). For a single massive particle of mass m

and spin J , the quadratic and quartic Casimir operator of the Poincaré algebra iso(1, 3)

are fixed and given by

C2
(
iso(1, 3)

)
= −P 2 = m2

and

C4
(
iso(1, 3)

)
= C2

(
iso(1, 3)

)
× C2

(
so(3)

)
⇐⇒ W 2 = m2 J(J + 1) . (4.1)

Employing the identities (3.4), one can show that, on the Di-Rac-Majorana representation,

the squared Pauli-Lubanski vector takes the form

W 2 =
1

4
P 2 + (P · Γ)2. (4.2)
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UIR Standard frame Stability Majorana

Pµ algebra spectrum

Massive (m, 0, 0, 0) so(3) m =M/
(
J + 1

2

)
: J = 0, 1/2, 1, . . .

Continuous-spin (E, 0, 0, E) iso(2) E =M/ε : 0 < ε < +∞
Tachyonic (0, 0, 0, `) so(2, 1) ` =M/σ : 0 < |σ| <∞

Table 3. Majorana spectrum for time-like, light-like and space-like particles.

Hence, in Majorana’s theory a particle with some fixed spin and mass is equivalently

characterized by the equations

(P · Γ−M)ψ(x, q) = 0, (P 2 +m2)ψ(x, q) = 0. (4.3)

The first one corresponds to the infinite-component Majorana equation and the second one

is the Klein-Gordon equation. In Majorana’s construction, these equations are completely

independent, as explained in section 2. According to the values of P 2, massless, tachyon and

massive particles can be obtained.10 The spectrum of particles in every sector (summarized

in table 3) can be obtained from the representation of the little algebra in the standard

frame, which is contained in the respective stabilizer of so(2, 3) (see table 5 in appendix A).

For our purpose, we focus ourself here in the study of the massive and massless

solutions.

In the rest frame for a massive particle of mass say m , the momentum is P µ =

(m, 0, 0, 0) and the Dirac-like operator reads P · Γ = mΓ0 . The spectrum of eigenvalues

of the operator Γ0 is the set of non-vanishing half-odd-integer numbers, so the Majorana

equation produces the mass spectrum

mJ =
M

J + 1
2

, J = 0, 1/2, 1, · · · (4.4)

Observe that there are only positive-energy solutions. Moreover, for any fixed momenta

the eigenpaces of Γ0 is isomorphic to the so(3)-module DJ of dimension 2J + 1 (see ap-

pendix A, (A.5)). Therefore, the half-integer J gives the spin of the corresponding particle

of mass mJ and the operator R (3.7) is the statistical phase (see (A.9)).

The statistical phase for every particle is also given by (A.9) with J , the eigenvalues

of Ŝ. A specific particle in this spectrum can be extracted out by imposing simultaneously

the Dirac-like equation in (4.3) and the Klein-Gordon equation P 2 +m2
J = 0 . Differential

equations of different sort can be proposed such that a finite set of particles in the massive

sector of the Majorana representation are extracted. On the one hand, first order field

equations have already been given for spin zero in [23] (the so-called “new Dirac equation”)

and spin 1/2 in [24] (the “Staunton equation”). On the other hand, Bidenharn proposed [40]

a differential equation of order 2J + 1 which extracts all the massive particles with spin

≤ 2J . All these equations have only positive energy solutions.

10See ref. [5], and appendix A for a summarized account of the massless and tachyonic solutions.
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In the standard frame for a massless particle of energy E , the momentum is

Pµ = (E, 0, 0, E) and the Dirac-like operator reads P · Γ = E (Γ0 + Γ3) . The spectrum

of eigenvalues of the operator Γ0 + Γ3 is the subset of real numbers ε > 0. In order to

understand the massless spectrum, it is better to look at the squared Pauli-Lubanski (4.2)

which in the present case is equal to W 2 = (P · Γ)2 = E2ε2 = M2 by virtue of the

Majorana equation. This means that the massless sector is made of the “continuous-spin”

representations parametrized by M . A more detailed analysis (see [5] and appendix A)

shows that the massless spectrum is actually made of the direct sum of the bosonic and the

fermionic continuous-spin representations. Khan and Ramond provided an enlightening

interpretation of the elusive “continuous-spin” (bosonic or fermionic) representations as

the limit of massive representations where the (either integer or half-odd-integer) spin goes

to infinity, J → ∞ and the mass to zero, m → 0, with their product J m = M kept fixed

to a constantM with the dimension of a mass [25]. Indeed, one can check that the squared

Pauli-Lubanski has the limit: W 2 = m2J(J + 1) → M2 . Remark that the Majorana

equation provides a particular realization of this limit because the massless sector can be

understood as the infinite-spin limit of the massive sector, see (4.4). More generally, this

new interpretation explains many exotic features of the continuous-spin representations.

For instance, although they are massless the continuous-spin representations are not

conformally invariant since they are characterized by a parameter with the dimension of

a mass, like massive particles.

It is worth mentioning that, formally, the (spin 1/2) Dirac equation consists in re-

placing the Γµ operator by the Dirac-matrices (− i
2γµ more precisely), and the continuous

internal variables qi by discrete (spinor) variables. Other finite representations for Γµ can

be considered, producing other equations, like the Kemmer-Duffin-Petiau (describing a

scalar and a vector massive field) for example. In the general case, studied by Bhabha [27],

it is not possible to fix univocally the Poincaré representation, and a finite number of parti-

cles appear. A characteristic of these systems is the increasing number of particles and the

maximal spin in the spectrum, when the dimension of the Γ-matrices increases, while the

mass still decreases with the increasing spin. It is interesting to observe that the Dirac and

the Majorana equations look like limiting cases, i.e. when the dimension of the Γ-matrices is

four (the minimum possible to get a faithful so(3, 2) representation) and, respectively, when

their dimension is infinite. They correspond also to two “extreme” cases when the equa-

tion produces either only one irreducible representation of the Poincaré group, describing

a fermion, or when the representation contains an infinite number of particles.

5 Relativistic wave equations and arbitrary Regge trajectories

The Majorana UIRs of the Lorentz algebra can be used to describe an arbitrary number of

particles with spin and mass distributed in arbitrary (non-degenerate) Regge trajectories.

Group theoretically, that can be done by imposing some relation between the Casimir oper-

ators of the Poincaré algebra. Field theoretically, this can be realized by establishing a func-

tional relation between the Dirac-like operator P ·Γ and the momentum square P 2 . Then,

the Poincaré group representation is not irreducible but decomposes as direct sum of UIRs
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with a certain correlation between spin and mass. The constraint has the general form,

F(P · Γ, P 2)ψ(x, q) = 0, (5.1)

such that the infinite-component Majorana equation and the Klein-Gordon equation can re-

spectively be seen as the two particular cases where the function F(y, z) is either linear in y
or z either leading to a decreasing Regge trajectory (4.4) or to a horizontal Regge trajectory

m2 = constant. The first example corresponds to Majorana’s theory while the second cor-

responds to the massive higher-spin supermultiplet, as discussed in many detail in the next

section. A general discussion of wave equations with the form F(P ·Γ, P 2) = f(P 2)−(P ·Γ)2
was provided in [41]. We will not attempt to present a completely exhaustive discussion

of infinite-component wave equations (5.1) based on the Majorana representation but we

will merely describe a particular prescription for describing Regge trajectories. In order

to ensure a spectrum of massive particles, one can assume for instance

F(P · Γ, P 2) = P 2 + G+(P · Γ, P 2), (5.2)

where G+ > 0 is a positive definite function on R
2, such that the solutions of (5.1) can be

only massive P 2 < 0. Notice that, when restricted to massive solutions P 2 < 0, the square

of the Pauli-Lubanski vector (4.2) can be written as,

W 2 = −P 2Ĵ(Ĵ + 1) , Ĵ :=
P · Γ√
−P 2

− 1/2 , (5.3)

from where we identified the “spin operator” Ĵ (observe that this operator is non-local) by

analogy with equation (4.1). Passing to the standard frame P µ = (m, 0, 0, 0) this operator

becomes equivalent to the Hamiltonian of a harmonic oscillator on the plane (see (A.4)

and (A.5)),

Ĵ
rest

= Ŝ =
Ĥ − 1

2
⇒ Ĵ = 0, 1/2, 1, · · · (5.4)

hence, it takes only half-integer eigenvalues. We can rewrite now (5.2) in terms of the spin

operator via

G+
(
P · Γ, P 2

)
= G+

(√
−P 2(Ĵ + 1/2), P 2

)
,

where the apparent non-locality is just an artifact coming from the use of the spin

operator. In order to produce arbitrary non-degenerate Regge trajectories, one should

assume that the corresponding equation

F
(
m(J + 1/2),m2

)
= 0

can, say, be solved for the spin J in terms of the mass m (this requires some invertibility

condition such as ∂G+(y, z)/∂y 6= 0). These rising Regge trajectories requires either a non-

local or at least a higher-derivative wave operator F(P ·Γ, P 2) whose corresponding inverse

(i.e. the propagator) would give rise to unphysical properties such as ghosts, unfortunately.

This is in agreement with the no-go theorem [12]. In particular, the wave equation where

α′ with dimension of length square and c > 0 a dimensionless positive constant (cf. [42])

α′ P 2 + c+ Ĵ = 0,
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produces a linearly rising Regge trajectory m2 = (J + c)/α′ (“Chew-Frautchi plot”) but

is highly non-local. Nevertheless, the local (but sixth order) equation

P 2
(
α′P 2 + c− 1

2

)2
+
(
P · Γ

)2
= 0,

reproduces the same linearly rising Regge trajectory.

6 Massive higher spin fields as covariant harmonic oscillator

Let us turn back to the particular case of a wave function taking values in Majorana’s

representation of the Lorentz group and satisfying the Klein-Gordon equation. The cor-

responding mass spectrum has infinite degeneracy and corresponds to a horizontal Regge

trajectory. In this simplest case, there exists a simple dictionary between the Fock space

of a planar harmonic oscillator and the Hilbert space of positive-energy particles in this

horizontal Regge trajectory.

The spin operator in the rest frame (5.4) takes a particularly simple expression, cor-

responding to the Hamiltonian of a planar harmonic oscillator. The raising operators a+i
transform as two-component Weyl spinors under the rotation subalgebra so(3) so that it

is clear that the basis elements a+i1 . . . a
+
i2J
| 0〉 of the Fock space at level J span the spin-J

module DJ of so(3) . Thus to any energy level with degeneracy equal to 2J+1 = N1+N2+1

(N1, N2 ∈ N) in the Fock space corresponds a massive particle of spin J = (N1 +N2)/2 in

the Hilbert space. These degenerated states, corresponding to (a+1 )
N1(a2

+)N2 | 0〉 in the

Fock space, can be labelled by the third component of the spin, say S3 = S12 = (N1−N2)/2.

The raising a+i and lowering a−i operators (i = 1, 2) respectively increase and decrease the

energy of the planar harmonic oscillator by one unit. Since the spin is related to the en-

ergy in (A.5), this means that the same operators acting on the Hilbert space equivalently

increase or decrease the spin by11 one-half, i.e. they correspond to a supersymmetry trans-

formation. As mentioned in the appendix A this “bosonic” realisation of supersymmetry

which comes from the Weyl algebra A2 has the interesting consequence that the irreducible

supermultiplets may contain an infinite number of particles. This motivates to establish

the precise dictionary between the harmonic oscillator on the plane and the massive higher-

spin supermultiplet. We would like to have therefore, the Poincaré covariant equivalent

expression of the harmonic oscillators as well as the eigenstates of the Hamiltonian. For

that purpose, we define the covariant version of the creation and annihilation operators (in

the sense that they reduce in the rest frame to a±i ) as follows:

D±a = (±iP µγµ +
√
−P 2)a

bLb. (6.1)

They satisfy (D−a )
† = D+

a . In the rest frame P µ = (m, 0, 0, 0) we have

[D±a ]rest = m(a±1 , a
±
2 ,±ia±1 ,±ia±2 ). (6.2)

11More precisely, the oscillators a±1 create/destroy a spin “up” while the oscillators a
±

2 create/destroy a

spin “down.”
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A simple computation gives

[D±a , D
±
b ] = 0, [D+

a , D
−
b ] = 2

√
−P 2(P · γ)ab − 2iP 2Cab, (6.3)

[Jµν , D
±
a ] = −(γµν)a bD±b , [Pµ, D

±
a ] = 0. (6.4)

This algebra by itself does not require the mass-shell condition. Observe however that

“passing to the rest frame,” states with different masses would produce the same vacuum

for the harmonic oscillator, by means of the equation a−i | 0〉 = 0. In other words, the

“covariant” vacuum defined by D−a φ(x, q) = 0, has an indeterminate mass. The mass-shell

condition is a first class constraint consistent with covariant-vacuum equation since [P 2 +

m2, D−a ] = 0. Thus it can be used to redefine D̃−a := [D−a ]√−P 2=m = (−iP µγµ +m)a
bLb.

In this way, the equation

D̃−a φ(x, q) = 0, (6.5)

produces a well defined covariant vacuum with spin zero and mass m, which in fact turns

to be the “new Dirac equation” [23]. We can verify the consistency of the condition (6.5).

Indeed the commutator [D̃−a , D̃
−
b ] = −iCab(P

2+m2) together with LaD̃−a = −4i(P ·Γ−m/2)
leads to the Klein-Gordon and Majorana equations

(P 2 +m2)φ(x, q) = 0, (P · Γ−m/2)φ(x, q) = 0. (6.6)

By (5.3), φ(x, q) has mass m and spin 0. The vacuum has been defined, so the raising

operator D+
a enables us to get higher-spin particles. In fact, the fields

ϕS(x, q) = ζa1a2...a2Sϕa1a2...2S (x, q), ϕa1a2...a2S
(x, q) = D+

a1
D+
a2
. . . D+

a2S
φ(x, q), (6.7)

where ζa1a2...a2S are constant symmetric spinor-tensors, have mass m and spin S, where

S = 0, 1/2, 1, · · · , since they satisfy the Klein-Gordon and the spin equation,

(P 2 +m2)ϕS(x, q) = 0, (Ĵ − S)ϕS(x, q) = 0. (6.8)

Taking in account (6.6) for the vacuum, the first relation is automatic from [P 2 +

m2, D+
a1
D+
a2
. . . D+

a2S
] = 0 whereas the second one is obtained considering

[Ĵ , D±a ] = ±1/2D±a , (6.9)

and [Ĵ , D+
a1
D+
a2S

. . .D+
a2S

] = SD+
a1
D+
a2
. . .D+

a2S
. The field (6.7) is completely symmetric in

the ai indices, since D
+
a1

are commuting operators. Furthermore, observe that supersym-

metric transformations are generated by the D+
a and D−a operators, as they increase or

decrease the spin in one-half unit

(Ĵ − (S ± 1/2))D±a ϕS(x, q) = 0,

as a simple consequence of (6.9) and the fact that ϕS(x, q) is a spin-S field, i.e. a solution

of (6.8). The general solution of the Klein-Gordon equation is therefore

ϕ(x, q) =
∑

S∈{0,1/2,1,··· }
ϕS(x, q), (6.10)
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with every ϕS(x, q), carrying an irreducible representation of the Poincaré group of spin

S. This infinite tower of higher spin is indeed a consequence of the decomposition so(2)⊕
so(3) ⊂ so(3, 2) (A.10), and turns out to be a characteristic of the Majorana representation.

These fields are solutions of the Dirac-Fierz-Pauli [9] equations for massive fields. Let us

define the operators,

φ̂±µ1µ2...µn = ĥ±µ1
. . . ĥ±µn , Ψ̂±µ1µ2...µn

a = ĥ±µ1
. . . ĥ±µnD

±a, (6.11)

ĥ±µ = (γµ)
abD±a D

±
b = 8

(
−P 2Γµ + P · ΓPµ ± i

√
−P 2SµνP

ν
)
. (6.12)

From (6.7), saturating the spinor indices by contraction with the γµ-matrices one gets

the fields,

φµ1µ2...µn(x, q) := φ̂+µ1µ2...µnφ(x, q), Ψµ1µ2...µn
a(x, q) := Ψ̂+

µ1µ2...µn
aφ(x, q). (6.13)

By construction, they have integer spin-S = n or half-odd-integer spin-S = n+1/2 respec-

tively, since

[Ĵ , φ̂±µ1µ2...µn ] = ±nφ̂±µ1µ2...µn , [Ĵ , Ψ̂±µ1µ2...µn
a] = ±(n+ 1/2)Ψ̂±µ1µ2...µn

a. (6.14)

Now, from the identities,

(−iP µγµ +m)a
c(+iP µγµ +m)c

b = (P 2 +m2)δba, (6.15)

iP µĥ±µ = ∂µĥ±µ = 0, ĥ±µĥ+µ = 0, (6.16)

we check easily that fields (6.13) are also solutions of the higher spin field equations12

(P 2 +m2)φµ1µ2...µn
(x, q) = 0, ∂µφµµ1...µn−1

(x, q) = 0, φµµµ2...µn−2
(x, q) = 0,

(6.17)

(iPµγµ −m)a
b(Ψµ1...µn

)b(x, q) = 0, Ψµ
µµ1...µn−2

(x, q) = 0, (γµ)a
b(Ψµµ1...µn−1

)b(x, q) = 0,

(6.18)

but they have only positive energy, by construction. Observe however that a dependence

in the internal space R
2 3 (q1, q2) still remains. In summary, via “covariantization” we have

established the precise dictionary between the states of the planar harmonic oscillator and

the positive-energy massive particles in a horizontal Regge trajectory including all spins

(see table 4).

7 Symmetries of the infinite set of fields

We have already seen that the multiplet (6.10) exhibit some aspect of supersymmetry

since it contains bosons and fermions which are related by the D±a operators. Because it

contains an infinite number of particles, in principle they could involve additional “internal”

12In order to prove the last equation in (6.18), it is necessary to use the fact that the operator (γµ)a
bĥ+

µD
+
b

vanishes. This fact can be checked in the rest frame.
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Planar harmonic oscillator Horizontal Regge trajectory

a±i D±a
a−i | 0〉 = 0 D−a φ(x, q) = 0, (P 2 +m2)φ(x, q) = 0

|n1, n2〉 ϕS(x, q), S = n1+n2

2

H Ĵ + 1/2

so(3) so(1, 3)

Table 4. Dictionary Oscillator/Higher Spin field.

symmetries. We can immediately see for instance, that the Hermitian combination of

operators D±a gives rise to

La =
D+
a +D−a√
−P 2

,

i.e., the osp(1|4) supercharge. Hence, the supermultiplet (6.10) carries not only represen-

tation of the Poincaré algebra, but also a representation of osp(1|4). This supermultiplet

can be considered as the positive-energy sector of of the equation (5.2) in the particular

case when G+ = m2 (i.e. a “horizontal” Regge-trajectory) or like the the limit J → ∞ of

the Biedenharn equation [40]. In fact the Biedenharn equation, is a generalization of the

New Dirac equation (6.5), which can be written as

D̃−a1
. . . D̃−a2J+1

φ(x, q) = 0, J = 0, 1/2, 1, 3/2, . . . ,

whose solutions are all fields with spin S ≤ J and mass m. At first glance however, the

operators D±a do not satisfy the usual anticommutation relation of supersymmetry

{D±a , D±b } = 4
√
−P 2Â±µ (γ

µ)ab ± 4iF̂±µν(γ
µν)ab, (7.1)

Â±µ :=
√
−P 2Γµ +

P ·Γ√
−P 2

Pµ ± iSµνP ν , F̂±µν := ∂µÂ
±
ν − ∂νÂ±µ . (7.2)

The equation (7.1) should be compared with (6.12) where ĥ±µ = 8
√
−P 2Â±µ . The vector

and antisymmetric tensor operators Â±µ and F̂±µν are related as a vector field and its field-

strength. Actually the analogy may be pursued further because they obey to the Proca-like

identity: ∂µF̂µν − ∂µ∂µÂν ≡ 0. Observe that here we use a Schrödinger representation of

these operators (acting on the internal space), which seems to be quite analogous to the

representation of the three-dimensional Abelian Chern-Simons field in [43]. It might be

useful to provide several interpretations of the algebra (7.1).

Firstly, operators in the r.h.s of (7.1) carry spin one,
[
Ĵ ,
{
D±a , D

±
b

}]
= ±

{
D±a , D

±
b

}
.

That means, both Â± and F̂± acting on a field of spin S field produce another one of spin

S ± 1. In particular, acting on the vacuum, they produce

Aµ(x, q) := Â+µ φ(x, q), Fµν(x, q) := F̂±µνφ(x, q) = ∂µAν − ∂νAµ. (7.3)
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Then, owing the identities (6.16) one can check that the Proca equation and the transver-

sality condition are satisfied

∂µFµν −m2Aν = 0, ∂νAν = 0. (7.4)

Of course, this interpretation applies also for all operators φ̂+ and Ψ̂+ in (6.11). Thus, D±a
are thus a kind of square root of the massive vector fields A±µ .

Secondly, let us rewrite the anticommutator (7.1),

{D±a , D±b }=
(
4
√
−P 2ĴPµ

)
(γµ)ab±4iF̂±µν(γµν)ab+

(
−4P 2Γµ+ 2

√
−P 2Pµ ± i4

√
−P 2SµνP

ν
)
(γµ)ab

and consider the “continuous-spin limit” [25]:
√
−P 2 → 0, Ĵ → ∞ such that√

−P 2Ĵ = M = constant, then the last term in parenthesis vanishes and the anticommu-

tator produces,

{Q±a , Q±b } = 2Pµ(γ
µ)ab ± 2iŴ±

µν(γ
µν)ab, (7.5)

which are the usual anticommutation relation of the superPoincaré algebra with tensorial

central charges. Here we have defined

Q±a := (
√
2M)−1D±a and Ŵ±

µν := (
√
2M)−1F̂±µν . (7.6)

The operator

Ŵ±
µν = i(

√
2M)−1

(√
−P 2(PµΓν − PνΓµ)± i(PµSνλ − PνSµλ)P λ

)

(whose first term in parenthesis vanishes in the massless limit) is a central antisym-

metric Lorentz tensor of rank two. Observe that this limit is equivalent to consider

the large spin solutions of the Majorana equation. That comes from the condition√
−P 2Ĵ = P · Γ −

√
−P 2/2 = M , which in the continuous-spin limit is equivalent to

P ·Γ =M , the Majorana equation. It shows that the continuous-spin limit of the massive so-

lutions of the Majorana equation and its massless solutions are equivalent. Hence, the mass-

less sector of the Majorana equation form a (tensorial central extended) superPoincaré mul-

tiplet (c.f. [26, 33]). It can be seen also, simply by checking that the superchargesQ±a are ob-

servables with respect to the Majorana equ ation for massless particles, i.e., the commutator

[P · Γ−M,Q±a ] = ±
√
−P 2Q±a /2 (7.7)

vanishes for massless particles. Thirdly, we can change our point of view and rewrite the

anticommutator of Q±a

{Q±a , Q±b } = 2P±µ (γµ)ab ± 2iŴ±
µν(γ

µν)ab,

where

P±µ := (
√
2M)−1

√
−P 2Â+µ = (

√
2M)−1

(
(P · Γ)Pµ − P 2Γµ ± i

√
−P 2SµνP

ν
)
. (7.8)
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If we interpret either P+µ or P−µ as the “translation” operator, this is also the anticommu-

tation relation of the superPoincaré algebra with tensorial central charges. In fact,

[Jµν , Jλρ] = i(ηµλJνρ + ηνρJµλ − ηµρJνλ − ηνλJµρ),
[Jµν ,P±λ ] = i(ηµλP±ν − ηνλP±µ ), [P±µ ,P±ν ] = 0,

[Jµν , Q
±
a ] = −(γµν)a bQ±b , [P±µ , Q±a ] = 0.

[Jµν , Ŵ
±
λρ] = i(ηµλŴ

±
νρ + ηνρŴ

±
µλ − ηµρŴ±

νλ − ηνλŴ±
µρ),

[Ŵ±
µν , Ŵ

±
λρ] = 0, [Ŵ±

µν ,P±λ ] = 0, [Ŵ±
µν , Q

±
a ] = 0. (7.9)

Some remarks are in order here. The generators with the same upper index ± commute

with each other, as a simple consequence of (6.3). However, since [D+
a , D

−
b ] 6= 0 the

operators with different upper indices do not commute. Choosing just one type of

operators in (7.9), i.e. with the upper index + or −, one could be tempted to interpret

Ŵ±
µν either, like the electric-magnetic charge of a membrane or like translation generators

in a tensorial space. On the one hand, Ŵ±
µν , being related the fieldstrength of the Proca

field (7.4), seems to be closer to the first interpretation. On the other hand, P±µ and Ŵ±
µν

together, could be seen as the translation operators in a 4+6 dimensional (tensorial) space.

We would like to study the algebraic structure of operators (6.11). Because of (6.3),

they commute when they have the same upper indices, symbolically; [φ̂±, φ̂±] = [φ̂±, Ψ̂±] =
[Ψ̂±, Ψ̂±] = 0. But when they have different upper indices, as Q+

a and P−µ etc., they satisfy

a complicated algebra. It is better therefore to proceed by looking at their algebraic

properties, starting with the rough structure and then depurating it.

1. Firstly, consider the infinite-dimensional associative algebra presented by the gener-

ators D+
a and D−b modulo the (anti)commutation relations (6.3) where P µ are seen

as numbers:

CA2(P ) := {All possible products of D+
a , D

−
a } (7.10)

In the particular case P µ = (m, 0, 0, 0), it becomes the Weyl algebra, so we could

refer to CA2(P ) as the “covariantized Weyl algebra”.

2. Secondly, we can notice that CA2(P ) is Z2-graded and

CA2,0(P ) := {All even order products ∈ CA2(P )},

CA2,1(P ) := {All odd order products ∈ CA2(P )}.

Hence

[R, CA2,0] = 0, {R, CA2,1} = 0. (7.11)

The subspace CA2,0(P ) corresponds to the operators which do not change the statis-

tics of the fields, since it commutes with the “statistical phase” R. The operators of

CA2,1 change the statistics, shifting the spin by a half-odd-integer number, acting as

generalized supercharges.

– 22 –



J
H
E
P
0
5
(
2
0
0
9
)
1
1
8

3. Thirdly, we can extract the operators which change the spin in a fixed quantity

φ±(n) :=
{
All operators φ̂±(n) ∈ CA2,0 |

[
Ĵ , φ̂±(n)

]
= ±n φ̂±(n)

}
, (7.12)

Ψ±(n+1/2) :=
{
All operators Ψ̂±(n) ∈ CA2,1 |

[
Ĵ , Ψ̂±(n)

]
= ±(n+ 1/2) Ψ̂±(n)

}
(7.13)

In other words, CA2(P ) is also Z-graded. A characteristic representant of any element

in these sets can be chosen to be of the form

φ̂±(n) → φ̂±µ1µ2...µn , Ψ̂±(n+1/2) → Ψ̂±µ1µ2...µn
a n = 0, 1, 2, · · · (7.14)

In fact, (7.12) and (7.13) form equivalence classes.

8 Conclusion

We have considered infinite-component fields carrying Majorana’s unitary representation

of the Lorentz group.

On the one hand, imposing the Majorana equation, we have shown that it contains

a massless superPoincaré multiplet with tensorial central charges. This supermultiplet

is unusual because it carries continuous-spin representations of the Poincaré group. The

possibility of a continuous-spin supermultiplet have been discussed already [26], but without

tensorial central extension. This supermultiplet is equivalently obtained as the continuous-

spin limit of their massive solutions (cf. [22]).

On the other hand, imposing the Klein-Gordon equation, an explicit system is con-

structed which is supersymmetric. The corresponding realization of the superPoincaré

algebra (7.9) is rather exotic for three reasons: firstly, the “translation” operators (7.8) are

not equal to the momenta and instead act both on space-time and spinning coordinates;

secondly, non-vanishing tensorial central charges are present; thirdly, there is no bound on

the spin content, the supermultiplet contains an infinite tower of particles with equal mass

m for all spins s ∈ N/2 . Observe that in the case of the N -extended supersymmetry alge-

bra (without tensorial central charges), the difference between the maximal and minimal

spin in any irreducible massive supermultiplet is at most equal to N/2 (essentially because

the supercharges are Grassmann odd). One could speculate that the exotic supersymmetric

system constructed here should be related to the limit N →∞ of a supersymmetric theory.

Some comments on symmetry breaking are now in order. The massive (and tachyonic)

solutions of the infinite-component Majorana equation are not supersymmetric but super-

symmetry is approximately realized for large spins or small masses. It is shown by taking

equation (7.7) and the Majorana mass-shell (4.4):

[
P · Γ−M,Q±a

]
= ±1

2
Q±a mJ , mJ =

M

J + 1/2
, J = 0, 1/2, 1, . . .

The supercharges Q±a preserve the equation of motion only when the mass vanishes. Here

the mass somehow acts as an order parameter (in analogy with Landau’s terminology for

its theory of second order phase transition); it is zero in the (super)symmetric phase and

different from zero in the broken phase. Insisting on the analogy, the low-spin sector with
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strongly broken supersymmetry could correspond to the ordered/low-energy phase and,

respectively, the higher-spin sector could correspond to its disordered/high-energy phase.

Thus, although the massless solutions of the Majorana equation are the only ones for

which supersymmetry is exact, it might also be interesting to see if there exists some new

spontaneous breaking of Poincaré supersymmetry where an infinite number of particles

would acquire mass, except the continuous-spin supermultiplet which would appear as a

Goldstone supermultiplet.

These ideas on symmetry breaking are also suggested from another point of view.

Beyond the Planck scale, string theory is expected to reach an extremely symmetric phase

with higher-spin gauge symmetries. Along this line of thinking, the infinite-dimensional

higher-spin superalgebra on AdS4 describing massless gauge fields of all spin (see e.g. [38] for

some reviews) is expected to be spontaneously broken to its finite-dimensional subalgebra

osp(1|4) at low energies. Our degenerate massive spectrum carries a representation of the

superalgebra osp(1|4) and of its higher-spin extension. Therefore, the possibility arises that

the dynamical origin of our massive supermultiplet might be some unusual flat limit of the

non-Abelian higher-spin gauge theory on AdS4.

A posteriori, one might say that Majorana’s work of 1932 even anticipated super-

symmetry, confirming once again the premonitory character of his ideas. The fact that the

spectrum contains only positive-energy solutions with fermions and bosons treated on equal

ground was already an indication in favour of supersymmetry [44]. Another perspective

on our observation is that if one supplements Majorana’s equation by massless Klein-

Gordon’s equation, this set of field equations provides a supersymmetrization of Wigner’s

equations [45] describing the continuous-spin representation. It would be very interesting

to investigate the precise relationship between these two descriptions, for instance by the

possible link between the internal four-vector ξµ appearing in Wigner’s equation and the

infinite-dimensional “Dirac matrices” Γµ appearing in Majorana’s equation (2.3).

Finally, it would be satisfactory to obtain the above-mentioned relativistic wave equa-

tions from an underlying particle/string/brane model via first quantization. For instance,

single linear Regge trajectories have been obtained from various models: “rigid” string,

“composite” particle, “discrete” string, etc (see e.g. [46] and refs therein). As another ex-

ample, continuous spin representations arise from several “higher-order geometrical” mod-

els generalizing [47] (see e.g. [48] and refs therein). Moreover, the appearance of twistors in

the Majorana representation and of tensorial central charges in the supersymmetry algebra

are very reminiscent of the superparticle models [19, 21] and their developments. In these

models, superparticles tensorial central charges have different physical meaning than that

of superbranes. They correspond to spin degrees of freedom of the superparticles, while

it is well known that brane tensorial charges are similar to electric-magnetic charges. It

would be interesting to find the right physical interpretation of the tensorial central charges

appearing in the (continuous-spin and massive higher-spin) supermultiplets constructed in

the present work. For this purpose, it is suggestive to look at its two dimensional internal

space (see eqs. (6.17), (6.18) and comments below).

To conclude, the work initiated by Majorana could provide a useful toy model for

testing various ideas on higher-spin spontaneous supersymmetry breaking.
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A The Weyl algebra A2 and some subalgebras

The complex Weyl algebra A2 is generated by the qi and ηj satisfying (3.2). If we consider

AR
2 , the real form of A2, generated by the usual harmonic oscillators

a±i =
1√
2
(qi ∓ ηi), i = 1, 2. (A.1)

it admits a unitary representation given by

M =

{
|n1, n2〉 =

(a+1 )
n1

√
n1!

(a+2 )
n2

√
n2!

| 0〉 , n1, n2 ∈ N

}
, (A.2)

with the vacuum | 0〉 being defined by a−i | 0〉 = 0. Furthermore A2 (or A
R
2 ) is a Z2−graded

associative algebra (graded by the map R (see (3.7)) and we have AR
2 = AR

2,0 ⊕ AR
2,1, such

that AR
2,iA

R
2,j ⊆ AR

2,i+j (modulo two). Consequently the vector space AR
2 endowed with

the bracket [b1, b2]± = b1b2 − (−1)|b1||b2|b2b1 where bi are homogeneous elements and |bi|
their Z2-grading, naturally inherits a structure of Lie superalgebra. Of course, similar

results hold for the complex Weyl algebra A2. It is known that various (super)algebras

can be embedded in the Weyl algebra AR
2 (the Lie subalgebra of the Weyl algebra A1

have been classified in [49]). Since the representation (A.2) is unitary the corresponding

representations will be automatically unitary provided that the various generators are

Hermitian combinations of the oscillator (A.1).

A.1 The osp(1|4) Lie superalgebra
We construct now explicitly the osp(1|4) algebra introduced in (3.3). Its fermionic part is

generated by the harmonic oscillators (A.1). To construct its bosonic part, we consider the

Dirac matrices in the Majorana representation

γ0 =

(
0 −σ0
σ0 0

)
, γ1 =

(
0 σ0

σ0 0

)
, γ2 =

(
σ3 0

0 −σ3

)
, γ3 =

(
−σ1 0

0 σ1

)
, (A.3)

and set γµν = − i
4 [γµ, γν ]. Using (3.3) we obtain

S12 =
1

2
(N1 −N2) , S23 =

i

2

(
−a+2 a−1 + a+1 a

−
2

)
,

S31 =
1

2

(
a+2 a

−
1 + a+1 a

−
2

)
, S01 =

i

4

(
−a−1 2 + a+1

2 − a−2 2 + a+2
2
)
,

S02 =
1

4

(
a−1

2 + a+1
2 − a−2 2 − a+2 2

)
, S03 =

1

2

(
−a−1 a−2 − a+1 a+2

)
,

S40 = Γ0 =
1

2
(N1 +N2 + 1) , S41 = Γ1 =

1

4

(
a−1

2 + a+1
2 + a−2

2 + a+2
2
)
,

S42 = Γ2 =
i

4

(
a−1

2− a+1 2− a−2 2+ a+2
2
)
, S43 = Γ3 =

i

2

(
−a−1 a−2 + a+1 a

+
2

)
, (A.4)
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it can be checked explicitly that the generators (A.4) are Hermitian. Furthermore, since

the odd part of the osp(1|4) algebra is generated by the usual harmonic oscillators the

representations are automatically infinite-dimensional and corresponds to (A.2). This is

rather different to the usual supersymmetric theories, where the odd part of the algebra

is generated by Grassmann variables and consequently a supermultiplet contains always a

finite number of components.

We now identify the module space M in the decomposition so(2, 3) ⊂ AR
2 . We firstly

identify the Cartan subalgebra, and the corresponding reduction of so(2, 3) under a rank-

two subalgebra. Here we are interested in the reduction with respect to the maximal

compact subalgebra so(2)⊕so(3). This algebra, is also taken in account for the classification

of particles on AdS4 space [18]. The so(2) ⊕ so(3) subalgebra is generated by Γ0 and

Si := Sjk (i, j, k are in cyclic order). Its Cartan subalgebra is chosen to be formed by Γ0
and S3. It is interesting to observe that Γ0 is up to a factor 1/2 the Hamiltonian of a

harmonic oscillator on the plane (see (A.4)). In this representation Γ0 and the Casimir

operator of so(3) are related

Γ0 = Ŝ +
1

2
, ~S · ~S = Ŝ(Ŝ + 1), where Ŝ =

N1 +N2

2
. (A.5)

Hence, the eigenvalues of the energy and the spin are integer or half-odd-integer numbers.

However this representation is remarkable in the sense that when the eigenvalue of Γ0 is

an integer number, the spin is an half-odd-integer number and conversely. To identify

precisely the representation of so(2, 3) we are dealing with, we introduce the root operators

Eε,ε′ = 1√
2
(M ε′

1 + iεM ε′
2 ), E

0,ε′ =M ε′
3 (with M+

i = iS0i − S4i and M−
i = iS0i + S4i) where

ε, ε′ = ± are the eigenvalues of S12 and Γ0 respectively. In particular we have

E+,− = (a−2 )
2, E−,− = (a−1 )

2, E0,− = −ia−1 a−2 . (A.6)

The lowest weights of the vector modules are annihilated by E+,−, E−,− and E0,− and are

labelled by the eigenvalues of Ŝ. Thus the triad (Γ0, Ŝ, S3) takes the eigenvalues,

Rac : (Γ0, Ŝ, s3)M+ = (S + 1/2, S, s3)M+, S = 0, 1, 2, 3, . . . (A.7)

Di : (Γ0, Ŝ, s3)M− = (S + 1/2, S, s3)M−, S = 1/2, 3/2, 5/2, . . . (A.8)

and s3 = −S,−S+1, . . . , S− 1, S. The lowest eigenvalues of the energy and spin operators

(Γ0, Ŝ) are respectively (1/2, 0) and (1, 1/2), hence, every module corresponds to the Rac

and Di representations and are generically denoted D(1/2, 0) and D(1, 1/2) respectively.

Taking in account (3.7) and (A.5),

R = (−1)2Ŝ = exp(i2πŜ), (A.9)

the reflection operator becomes a statistical phase, i.e. a representation of the fundamental

group Z2 of the rotation group.
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A.2 The so(3, 1) algebra

We would like now to show that the so(2, 3)−modules D(1/2, 0) and D(1, 1/2) remain

irreducible under the restriction to so(1, 3). First of all as a direct consequence of (A.4)

and (A.5) we have that in the embedding so(2)⊕ so(3) ⊂ so(2, 3)

D(1/2, 0) =
∑

s∈N

Ds,

D(1, 1/2) =
∑

s∈N

D 1

2
+s, (A.10)

where Ds is the spin-s irreducible representation of so(3). Furthermore, using (A.4) it is

not difficult to see that the boost operators (Ki = S0i) maps states of different spin

D0 K
// D1 K

// · · · K
// Dn

K
// · · · ,

D 1

2

K
// D 3

2

K
// · · · K

// D 2n+1

2

K
// · · · ,

and thus D(1/2, 0) and D(1, 1/2) remain irreducible under the Lorentz group. Recall that

the unitary representations of so(1, 3) are usually denoted [2, 50, 51] by [`0, `1] with either

`1 = iσ/2 ∈ iR and `0 ∈ 1
2N (principal series) or `0 = 0 and 0 < `1 ≤ 1 (complementary

series). The spin content of the representation is `0, `0+1, · · · , `0+n, · · · and the Casimir

operators are given by

C2
(
so(1, 3)

)
=

1

2
SµνS

µν = `20 + `21 − 1

and

C′2
(
so(1, 3)

)
=

1

4
εµνρσS

µνSρσ = −i`0`1 .

From (3.5), we have `0`1 = 0 and `20 + `21 =
1
4 . Thus, in the embedding so(1, 3) ⊂ so(2, 3),

we have D(1/2, 0) = [0, 1/2] (complementary series), D(1, 1/2) = [1/2, 0] (principal series).

This can also be obtained simply by computing the matrix element of the boost operator

using (A.4) and comparing with [2, 50].

A.3 The algebra associated to tachyons and massless particles

It is possible also to classify the representations of so(2, 3) employing other stabilizer al-

gebras as we now show. It could be associated to some exotic particles in AdS4 or, as we

shall see, to the massless and tachyonic particles on R
1,3 (in Majorana’s theory). These

subalgebras are respectively R ⊕ iso(2), so(1, 1) ⊕ so(1, 2). The results we recall here are

given in [5]. In table 5 we summarize it for the reduction under the several subgroup.

We now study the decomposition under so(1, 1)⊕so(1, 2). This embedding corresponds

to the little algebra of the Poincaré algebra for tachyonic representations PµP
µ = `2 > 0.

We consider the standard vector P µ = (0, 0, 0, `) the little algebra so(1, 2)⊕ so(1, 1) is then

generated by {S12, S20, S10} ⊕ {Γ3}. The Casimir operator of so(1, 2) is given by
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so(3, 2) Little algebra Invariant vector Eigenvalues

so(2)⊕ so(3) : {Γ0} ⊕ {S1, S2, S3} Γ0 1/2, 1, 3/2, . . .

iso(2) : S3, π1, π2 Γ0 + Γ3 0 < ε <∞
so(1, 1)⊕ so(1, 2) : {Γ3} ⊕ {S3, S10, S20} Γ3 −∞ < σ <∞

Table 5. Little algebras of so(3, 2).

C2
(
so(1, 2)

)
= J212 − J220 − J210,

and a direct computation using (A.4) gives

C2
(
so(1, 2)

)
=

1

4
− Γ23. (A.11)

This means that the representations of so(2, 1) can be characterised by means of the eigen-

values of Γ3. Unitary representation of so(1, 2) are either bounded from below/above

(discrete series) or unbounded from below and above (continuous principal or continuous

supplementary series). The continuous principal series are characterised by a continuous

value of the Casimir operator C2 = Φ(Φ + 1) with Φ = − 1
2 + iρ, ρ ∈ R i.e. C2 = 1

4 − ρ2.

Since Γ3 is a hermitian operator, its eigenvalue are reals. Looking to (A.11) means that

for any eigenvalue σ ∈ R of Γ3 we have a continuous principal series where C2 = 1
4 − σ2.

Indeed, denote |n1, n2〉 =
∣∣∣∣ n1+n2

2 , n1−n2

2

〉〉
an eigenvector of ~S · ~S and of S3 with eigenvalue

j = (n1 + n2)/2 and m = (n1 − n2)/2 respectively. Introduce then for n2 ≥ n1 (a similar

case holds when n1 < n2)

|σ,m〉 =
+∞∑

j≥m
Aσ,m
j || j,m 〉〉 , (A.12)

which is an eigenvector of J = S12 =
1
2(N1−N2) with eigenvalue m and impose Γ3 |σ,m〉 =

σ |σ,m〉. This leads to an inductive relation for the coefficients Aσ,m
j whose solution is [5]

Aσ,m
j =

1√
2π

1

Γ(2m+ 1)

√
Γ(j +m+ 1)

j −m+ 1
2m+

1

2 e−i
π
2
(m−j)F

(
m− j,m+

1

2
− σ, 2m+ 1, 2

)
,

(A.13)

on account to the identity upon the hypergeometric functions F [52]

(
(b− a)z − c+ 2a

)
F (a, b, c, z) = (a− c)F (a− 1, b, c, z) + (1− z)aF (a+ 1, b, c, z).
〈
σ′,m′|σ,m

〉
= δmm′δ(σ − σ′).

Now acting with the operators K± = S02 ± iS01 upon (A.12), one obtains a repre-

sentation unbounded from bellow and from above corresponding the the principal series

Dp(
1
4 −σ2, 0) if m is an integer number or Dp(

1
4 −σ2, 12) if m is a half-odd-integer number.

Consequently, if in the tachyonic case, where PµP
µ = `2, one solve the Majorana equation

in the standard frame, we obtain the principale series above with σ =M/` as a solution.
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We know study the decomposition R⊕ iso(2) ⊂ so(3, 2). This embedding corresponds

to the little algebra of the Poincaré algebra for massless representations PµP
µ = 0. In

this case in the standard frame we have P µ = (E, 0, 0, E) and the little algebra iso(2) is

generated by J = J12, and π1 = J01 + J31, π2 = J02 + J32. We thus consider the algebra

R⊕ iso(2) generated by {J12, π1, π2} and {Γ0+Γ3}. The Casimir operator of iso(2) is given

by π2 = π21 + π22. Using (A.4), a direct computation leads to

π2 = (Γ0 + Γ3)
2.

Unitary representation of iso(2) are infinite dimensional and defined by D0(p) =

{|p,m〉 ,m ∈ Z} or D 1

2

(p) =
{∣∣p,m+ 1

2

〉
,m ∈ Z

}

π2 |p,m〉 = p2 |p,m〉 , J |p,m〉 = m |p,m〉 ,
π+ |p,m〉 = −ip |p,m+ 1〉 , π− |p,m〉 = ip |p,m− 1〉 , (A.14)

with π± = π1 ± iπ2 and m ∈ Z or Z + 1
2 . Such representations are called the continuous

spin representations. As before, one is able for any value of λ ∈ R
∗, to find an eigenvector

of Γ0 + Γ3 with an eigenvalue λ leading thus to the continuous spin representation D0(ε)

and D 1

2

(ε) with ε = λ2 > 0 [5]. Furthermore, if one solves the Majorana equation in the

standard frame, one obtains the two continuous spin representation above with ε =M .
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